Bootstrap Model Selection in Generalized Linear Models

نویسنده

  • Wei Pan
چکیده

Model selection is a central component of data analysis Though there are a variety of methods for likelihood based estimation methods there are relatively few for non likelihood based generalized linear models GLM such as in the quasi likelihood and generalized es timating equation GEE approaches In this paper we develop basic and bias corrected bootstrap approaches to estimate the predictive mean squared error PMSE of a model and use the PMSE for model selection Simulation studies show that the bias corrected boot strap estimate works well when quasi likelihood or GEE is used to t either overdispersed or correlated response GLMs For correlated response data when the marginal distribution assumption is almost correct Akaike s Information Criterion AIC and Bayesian Infor mation Criterion BIC calculated under the working independence model also perform well For illustration the methods are applied to data sets from evolutionary biology and teratology

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Model Selection in Generalized Linear Models

In this paper, we extend to generalized linear models (including logistic and other binary regression models, Poisson regression and gamma regression models) the robust model selection methodology developed by Müller and Welsh (2005) for linear regression models. As in Müller and Welsh (2005), we combine a robust penalized measure of fit to the sample with a robust measure of out of sample pred...

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

FWDselect: An R Package for Variable Selection in Regression Models

In multiple regression models, when there are a large number (p) of explanatory variables which may or may not be relevant for predicting the response, it is useful to be able to reduce the model. To this end, it is necessary to determine the best subset of q (q ≤ p) predictors which will establish the model with the best prediction capacity. FWDselect package introduces a new forward stepwiseb...

متن کامل

Fitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County

Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...

متن کامل

Model selection in estimating equations.

Model selection is a necessary step in many practical regression analyses. But for methods based on estimating equations, such as the quasi-likelihood and generalized estimating equation (GEE) approaches, there seem to be few well-studied model selection techniques. In this article, we propose a new model selection criterion that minimizes the expected predictive bias (EPB) of estimating equati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011